APPROACHING BALLISTIC TRANSPORT IN SUSPENDED GRAPHENE PDF

Approaching ballistic transport in suspended graphene. Article (PDF Available) in Nature Nanotechnology 3(8) · September with. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approaching cm2. Transport in Suspended Monolayer and Bilayer Graphene Under Strain: A New. Platform for Material .. Approaching ballistic transport in suspended graphene.

Author: Yozshushicage Kataur
Country: Costa Rica
Language: English (Spanish)
Genre: Business
Published (Last): 19 July 2014
Pages: 396
PDF File Size: 12.4 Mb
ePub File Size: 17.70 Mb
ISBN: 399-4-58713-442-6
Downloads: 30264
Price: Free* [*Free Regsitration Required]
Uploader: Zuluramar

Here n 0 indicates the density induced by the gate voltage and n T indicates the total density, i. In d the nonmonotonic behavior at high densities does not appear due to the strong short-range potential scattering, but in high-mobility samples b the nonmonotonic behavior shows up due to the much weaker neutral impurity scatterings.

Xu Du – Google Scholar Citations

Abstract We theoretically consider, comparing with the existing experimental literature, the electrical conductivity of gated monolayer graphene as a function of carrier density, temperature, and disorder in order to assess the prospects of accessing the Dirac point using transport studies in high-quality suspended graphene. Solid dashed lines indicate Eq.

Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approachingcm2 V-1 s-1 for carrier densities below 5 x cm Figure 9 Temperature-dependent conductivity of SG corresponding to the experimental data of a Du et al.

  JURISPRUDENCE THEORY AND CONTEXT BRIAN BIX PDF

The dashed line indicates the conductivity due to the Coulomb disorder and the short-range disorder. Das Sarma and E.

The discovery of graphene raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties of this one-atom-thick layer of carbon. The same parameters used in Figs. Figure 4 Conductivity corresponding to the experimental data of Du et al. Figure 3 Conductivity of SG corresponding to the experimental data of Bolotin et al.

Approaching ballistic transport in suspended graphene.

Density-dependent electrical conductivity in suspended graphene: Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. Figure 6 Calculated conductivity as a function of density for different temperatures: At higher temperatures, above K, we observe the onset of thermally induced long-range scattering.

Solid dashed lines indicate the results with without phonon scattering. Weyl fermions are observed in a solid. Figure 5 Conductivity corresponding to the experimental data of Mayorov et al. We provide detailed numerical results for temperature- and density-dependent conductivity for suspended graphene.

Such values cannot be attained in semiconductors or non-suspended graphene.

Das Sarma 1 and E. Series I Physics Physique Fizika. Moreover, unlike graphene samples supported by a substrate, the conductivity of suspended graphene at the Dirac point is strongly dependent on temperature and approaches ballistic values at liquid helium temperatures.

  AVERY TEMPLATE 74459 PDF

Solid lines represent Eq. Approaching the Dirac point in transport S. Figure 2 Temperature-dependent electron density n T suspendrd. We show that the temperature dependence of graphene conductivity around the charge neutrality point provides information about how suspenfed the system can approach the Dirac point, although competition between long-range and short-range disorder as well as between diffusive and ballistic transport may considerably complicate the picture.

Figure 10 Temperature-dependent conductivity of SG corresponding to the experimental data of ab Bolotin et al. However, when the graphene sample is supported on an insulating substrate, potential fluctuations induce charge puddles that obscure the Dirac point physics. B 87— Published 18 January Sign up to receive regular email alerts from Physical Review B.

We theoretically consider, comparing with the existing experimental literature, the electrical conductivity of gated monolayer graphene as a function of carrier density, temperature, and disorder in order to assess the prospects of trannsport the Dirac point using transport studies in high-quality suspended graphene.